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Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum
and underdense plasma
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We propose that efficient acceleration of electrons in vacuum and underdense plasmas by an intense laser
pulse can be triggered in the presence of another counterpropagating or intersecting laser pulse. This mecha-
nism works when the laser fields exceed some threshold amplitudes for stochastic motion of electrons, as found
in single-electron dynamics. Particle-in-cell simulations confirm that electron heating and acceleration in the
case with two counterpropagating laser pulses can be much more efficient than with one laser pulse only. Two
different diagnoses show that the increased heating and acceleration are caused mainly by direct laser accel-
eration rather than by plasma waves. In plasma at moderate densities such as a few percent of the critical
density and when the underdense plasma region is large enough, the Raman backscattered and side-scattered
waves can grow to a sufficiently high level to serve as the second counterpropagating or intersecting pulse and
trigger the electron stochastic motion. As a result, even with a single intense laser pulse only in plasma,
electrons can be accelerated to an energy level much higher than the corresponding laser ponderomotive
potential.

DOI: 10.1103/PhysRevE.69.016407 PACS number~s!: 52.38.Kd, 52.35.Mw, 52.50.Jm
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I. INTRODUCTION

The mechanisms leading to significant acceleration
electrons in laser-plasma interactions have been the top
many theoretical and experimental studies over the past
decades. With the development of tabletop ultraintense
sers, ways of converting the ultrahigh-density laser ene
into particle beams have been attracting renewed atten
due to their potential applications@1–3#. These include the
fast ignition of ICF targets by high current multi-MeV ele
tron beams@4,5#, generation of collimated energetic io
beams through electron heating and acceleration@6#, com-
pact x-ray andg-ray source for laser-driven radiograph
laser-driven nuclear processes@1,3,7,8#, and compact and
low-costed laser wake-field accelerators, etc.@9–13#. A few
mechanisms of laser-driven electron acceleration have b
proposed, including plasma-wave acceleration@9–13#, direct
laser acceleration with the assistance of additional fields
by the laser ponderomotive force@14–18#, and mixed accel-
eration from both the transverse and longitudinal fie
@19,20#. The first two mechanisms usually occur in laser
teraction with underdense plasmas, while the third case
ally finds in laser interaction with overdense plasmas.

This work is devoted to an extended investigation o
kind of direct laser acceleration of electrons, i.e., the stoch
tic heating and acceleration of electrons in counterpropa
ing intense laser fields@17#. It was found earlier from
particle-in-cell~PIC! simulations that, when an intense las
pulse with a slowly rising front propagates in underden
plasma, electrons can be accelerated significantly far bey
the ponderomotive potential level of the incident puls
Meanwhile, the excited plasma wave remains at a very h
level. Further studies reveal the presence of the beta
resonance acceleration mechanism@16#, which works most
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effectively when a self-focusing channel is formed. On t
other hand, two of us find that very efficient acceleration
the intense laser pulse also occurs in the presence of atrans-
versestochastic field@15#. The oscillation energy of electron
inside the laser pulse can be unlocked by the stochastic
turbations. The essential role of the perturbations is no
heat the electrons directly, but to dephase the electrons
thereby to allow for net energy transfer. In that work, t
transverse stochastic field is left as a free parameter. U
recently we found that the Raman backscattered wave
serve as the transverse stochastic field@17#. Moreover, we
find that another counterpropagating laser field with a re
tively small amplitude can play a similar role as the stoch
tic perturbations in dephasing the electrons.

In the similar interaction configuration, one notes that t
excitation of periodic accelerating structures has also b
found with counterpropagating laser pulses in underde
plasma@21#. It is associated with thecoherent motionof
electrons driving by the two colliding laser pulses sligh
detuned by the electron plasma frequency. Here, in contr
our mechanism of electron acceleration is associated with
stochastic motionof electrons, which occurs when the am
plitudes of two laser pulses exceed some thresholds,
easily accessible with current ultrashort laser pulses emp
ing the chirped pulse amplification technology. Moreov
the present mechanism is insensitive to their frequency
ferences of the two laser pulses. In plasma at a few per
of the critical density, the Raman backscattering wave of
driving pulse can serve as the counterpropagating laser p
which could be intense enough to trigger stochastic accel
tion if the driving pulse has an intensity overIl2

;1018 W cm22 mm2. Stochastic heating could be respo
sible for the hot electron generation observed in PIC simu
tions by Adamet al. @22#, where it is found that the ho
electron generation is closely associated with parametric
©2004 The American Physical Society07-1
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stabilities. Stochastic heating of electrons in a standing w
formed by incoming and reflected waves in front of a so
target has been suggested@23#. Therefore the present mech
nism works widely in relativistic-intense laser interactio
with underdense plasma. It may also help to explain how
maximum electron energy can exceed the dephasing limi
particle acceleration from plasma wave breaking observe
some PIC simulations@24#. Experimental evidence of sto
chastic heating has been revealed recently with the us
two crossed laser pulses@25#.

The paper is organized as follows. Starting with t
single-electron dynamics calculation in Sec. II, we calcul
the electron trajectory in momentum phase space in
counterpropagating or intersecting plane electromagn
waves. We calculate the Liapunov exponent to examin
there exists stochastic motion, from which we obtain
threshold amplitudes for stochastic motion. In Sec. III,
present particle-in-cell simulation results to show how el
trons can be accelerated much more efficiently with the p
ence of a counterpropagating pulse than without it. Us
different diagnoses such as the angular directions of e
trons and separating energy gain or loss due to the transv
field from that due to the longitudinal field, we confirm th
electron acceleration observed in the simulations is cau
by the laser fields rather than by plasma waves. Tw
dimensional effects are also discussed. A summary is g
in Sec. IV.

II. SINGLE-ELECTRON DYNAMICS IN VACUUM

It is well known that the motion of single electrons in
plane electromagnetic wave is integrable@26#, and the maxi-
mum kinetic energy of electrons is determined following t
initial conditions. However, if there is a perturbation to ele
tron motion in the plane wave, such as another plane w
@27–29#, a static electric or magnetic field@14#, or a random
perturbation@15#, the corresponding Hamiltonian is usual
not integrable. In general, stochastic electron motion set
when certain thresholds of the wave amplitudes are excee
@30#. In this case, the maximum kinetic energy of electrons
not determined, and acceleration of electrons to much hig
energy than in a single plane wave is possible. There h
been considerable studies on electron motion in multiw
systems@14,27–30#. Based upon the single particle dynam
ics, it has been proposed by Mendonca and Doveil that
formation of suprathermal electron tails observed in la
plasma interaction may be explained by the occurrence
stochastic motion of electron in two electromagnetic~em!
waves @29,31#. However, this and other earlier studies
electron motion in a standing longitudinal plasma wave
two electromagnetic waves have been limited to the prob
of the stochastic instability near the separatrices, and mo
in nonrelativistic electron motion. The potential of this st
chastic instability in particle acceleration in plasma w
powerful lasers focused up to relativistic intensities has
been fully explored before.

We start by considering the electron motion in two colli
ing planar laser fields in vacuum. The laser pulses can
described by their vector potentialAi5ai(j i)cos(ji)ŷ[Ai ŷ,
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where i 51,2, j15x2t1c1, and j25k2(x1t)1c2, the
frequencies of the two laser pulses arev1 and v2, respec-
tively, x andt are normalized toc/v1 andv1

21, respectively,
k2(5v2 /c) andv2 are normalized tov1 /c andv1, respec-
tively, and c1 and c2 are constants. The first pulse prop
gates in positivex direction and the second one propagates
negativex direction. The Hamiltonian for electrons is give
by

H5@11~P1A!2#1/2, ~1!

where the canonical momentumP5p2A is normalized by
mc and vector potentialA by mc2/e. SinceA is independent
of y, one finds thatPy5constant5py0. For simplicity, we
assumepz50 in the following. Therefore the longitudina
motion can be described by HamiltonianH5@11px

21(py0

1A11A2)2#1/2. This Hamiltonian is still more complicated
than that for electron motion in counterpropagating plas
waves@27#. Even in the nonrelativistic limit, making the ca
nonical transform withh5x2t, F25hph , andph5px , as-
sumingpy050 ande5a2 /a1!1, the resulting Hamiltonian
contains two perturbation terms oscillating at different fr
quencies.

A. Surface of section plots

The instability regime for stochastic motion can be exa
ined in geometry by use of surface of section plots. Figur
shows the surface of section plots atj22j152Np or j2
52Np for two lasers at various amplitudes, whereN is an
integer. When the two laser pulses are at the same freque

FIG. 1. Surface of section plots atj22j152Np @for frames
~a!–~d!# or j252Np @for frames~e! and~f!# for electron motion in
counterpropagating laser fields.~a! a15a250.3 andv15v2; ~b!
a151.0, a250.1, and v15v2; ~c! a152.0, a250.1, and v1

5v2; ~d! a151.0, a250.42, andv15v2; ~e! a151.0, a250.1,
andv15v2; ~f! a151.0, a250.1, v250.8v1.
7-2
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the Hamiltonian is a periodic function ofj1 at a period ofp
on the surface of section atj22j152Np. When the ampli-
tudes of the two pulses are the same, the electron traject
in longitudinal momentum space are symmetric about z
as shown in Fig. 1~a!. Electron trapping is found aroun
(px ,j1)5„0,2(2N11)p/2… by the ponderomotive potentia
resulting from the beating of the two laser pulses. Stocha
motion first appears around the separatices. According to
Kolmogorov-Arnold-Moser~KAM ! theorem@30#, there exist
many KAM tori around a separatix. Local stochastic moti
sets in when nearby KAM tori overlap@32#. Thresholds for
local stochastic motion have been estimated to be ab
a1a251/16 by Mendonca@29#. When the amplitude of the
forward-moving pulsea1 is larger thana2 for the backward-
moving pulse, the electron trajectories become nonsymm
ric about zero; stochastic motion of electrons spreads wid
in positive momentum space. The larger the amplitudea1,
the wider the region for stochastic motion in positive m
mentum space, as shown in Figs. 1~b!–1~c!. For a givena2,
the width for stochastic motion scales roughly proportio
to a1

2. One notes that there remains regular motion for el
trons trapped around (px ,j1)5(0,0), where acceleration
cannot occur. However, with the increase ofa1 or a2 further,
this trapping island is gradually suppressed. Before it is fu
suppressed, bifurcation occurs at certain amplitudes w
the primary trapping island splits into two parts as shown
Fig. 1~d!. This shows a transition of the stochastic moti
from a local to a global one, where, in the latter case, e
trons initially at rest or with small energy will be driven int
stochastic motion and gain energy from laser fields. We h
checked the surface of section plots on the surfacej2
52Np, which show similar features as stated above, exc
for that the corresponding Hamiltonian changes withj1 at a
period of 2p. Figure 1~e! shows an example of the sectio
plots on the surfacej252Np. Up to now, we have taken th
frequencies of the two pulses to be the same. If the freque
of the second pulse is changed, the basic features abou
stochastic character are qualitatively similar, as shown
Fig. 1~f!, for an example. This indicates that the stochas
motion is not sensitive to the frequency difference of the t
pulses.

Figure 2 shows the trajectories of a test electron in m
mentum phase in vacuum with a single infinite plane
wave A1 or two counterpropagating plane em wavesA1
1A2. In a single em wave, the momentum of the electron
determined by@2,26# py1A15C1 and g2px5C2, where
C1 andC2 are constants. IfC150 andC25A11a1

2/2, then
one finds the solution with zero average drifting veloc
given by

py52A1 , px5
py

22a1
2/2

2A11a1
2/2

, ~2!

wherea1 is the amplitude of pulseA1. Figure 2~a! shows the
parabolic line betweenpx andpy as described by Eq.~2!. If
there is the second counterpropagating wave, the elec
trajectory in the momentum space is no longer confined
the parabolic line. Instead, it spreads in the moment
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space. The larger the amplitude of the second wave,
larger the momentum space and the maximum longitud
momentum, as illustrated in Figs. 2~b! and 2~c!.

B. Threshold amplitudes for stochastic motion

The Liapunov exponents can provide a quantitative m
sure of the degree of stochasticity for a given Hamilton
system, which enable us to judge if stochastic motion set
for a trajectory@30#. Let the test electron initially at rest an
the amplitudes of the infinite planar laser pulses incre
from zero in a function tan(t/tL) with tL550t andt the time
of a laser cycle. The Liapunov exponents are calcula
when the laser fields reach the peak amplitudes ata1 anda2
for t.2tL . As either the amplitudea1 or a2 increases, the
Liapunov exponents increase suddenly as the laser am
tudes exceed some threshold amplitudes. Figure 3~a! shows a
typical example of the calculated Liapunov exponents
different field amplitudes, which show a sudden increase
a2 is enhanced to 0.3 while keepinga151.5. We assume tha
full stochastic motion occurs when the corresponding
apunov exponent increases suddenly to exceeding 0.1 a

FIG. 2. Electron motion in momentum space in one plane e
tromagnetic~em! wave or two plane em waves.~a! a152.0 and
a250.0; ~b! a152.0 anda250.2; ~c! a152.0 anda250.3.
7-3
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field amplitudes increase. Since we start with the test e
tron at rest initially, the obtained thresholds should be as
ciated with the global stochasticity around the fundamen
trapping island in the surface of section plot. This is sho
in Fig. 3~b! by the solid line marked withvx050. It is ap-
proximatelya1a2;1/2, which is larger than that estimate
by Mendonca for local stochastic motion@29#, but close to
that for the bifurcation of the primary trapping island. O
notes that fora1.2.0, the thresholds fora2 slightly increase
with a1. This can be attributed to the fact that for a givena2,
the width of the primary trapping island increases witha1,
such that the electron motion tends to become regular. If
initial longitudinal momentum of the test electron is nonze
the threshold amplitudes can either reduce or increase
particular, if the initial velocity is positive such as driven b
the ponderomotive force at the front of the forwar
propagating pulse~with amplitudea1), the threshold ampli-
tude fora2 reduces significantly for the regime ofa1.a2, as
shown in Fig. 3~b!. For vx0>0.5, for example, the threshol
amplitude of the counterpropagating pulsea2 reduces to only
about 0.1 or less whena1.1.5. In addition, we mention tha
the so-called global stochastic motion is only limited to t
region between some upper and lower boundaries in lo
tudinal momentum, beyond which, the electron motion
comes regular again. For example, if the longitudinal vel
ity of the test electron is sufficiently larger, its trajectory

FIG. 3. ~a! Liapunov exponents for a test electron moving
counterpropagating laser fields with different incident field amp
tudes.~b! Threshold amplitudes for stochastic motion in count
propagating laser fields obtained numerically for electrons with
ferent initial velocities. Also shown are the thresholds for loc
stochastic motion by Mendonca and for the occurrence of bifu
tion for trajectories trapped in the fundamental island arou
(px ,j1)5(0,0).
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the colliding laser fields becomes regular again and furt
acceleration of the electron is not possible.

C. Electron dynamics in intersecting laser pulses

We consider a geometry shown in Fig. 4, where two la
pulses intersect at an angle 2a and interact with an electron
initially located at the coordinate origin. In this case, w
have two different cases for the laser pulses, i.e., the cas
P-polarized planar pulses if the vector potential is inside
xy plane and that forS-polarized pulses if the vector poten
tial is perpendicular to thexy plane. For theP-polarization
case, the vector potential for the planar pulses in vacuum
be written as

Ai5ai~j i !cos~j i !~ x̂ cosa7 ŷ sina!, i 51,2,

where 0<a< pi/2, j15y cosa1xsina2t1c1, and j2
5k2(y cosa2xsina2t)1c2, x and y are normalized to
c/v1 , t is normalized tov1

21, k25(v2 /c) andv2 are nor-
malized tov1 /c and v1, respectively,c1 and c2 are con-
stants; the upper and lower cases in the symbols7 and 6
appeared above and later correspond toi 51 and 2, respec-
tively. For theS-polarization case, the vector potentials of t
two pulses are simply

Ai5ai~j i !cos~j i !ẑ, i 51,2.

Using the canonical transformF25(t2y cosa)PT , one finds
Py52cosaPT , T5t2y cosa, and the new Hamiltonian
H̄(Px ,PT ,x,T)5g(Px ,PT ,x,T)1PT . Since the new
Hamiltonian is independent of timet explicitly in terms of
the new variables, one finds

Py2g cosa5C, ~3!

whereC5py02g0cosa is a constant withpy0 and g0 the
initial values of they component of momentum and th
relativistic factor, respectively, Py5py2Ay[py1(A1
2A2)sina for P polarization andPy5py for S polarization.
Let tanu5py /px , assumingpz50 when the laser pulse
propagate away and recallingg2511px

21py
2 , one finds the

angular direction of electrons satisfies

-
-
-
l
-

d

FIG. 4. Schematic plot of electron scattering in two intersect
laser pulses.
7-4
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tan~u!56F g221

~g cosa1C!2
21G21/2

. ~4!

Note that this relation is independent of the laser polari
tion. It can reduce to different limits as discussed elsewh
@33#. With the integral constant Eq.~3! and another onePz

5const accounting for thatH̄ is independent of the coordi
natez, one only needs to solvePx . Therefore it reduces to
the same problem of solving thex component of momentum
as in the case with counterpropagating laser pulses.

Alternatively, if one transforms all variables into a fram
moving with velocityV05 ŷc cosa, then the two pulses ap
pear as counterpropagating pulses. The four-vector for
quency and wave number in the moving frame a
(v i8 ,kix8 ,kiy8 ,kiz8 )5(v isina,6k0isina,0,0). For P-polarized
laser pulses, the components of the four-vector potential

~f i8 ,Aix8 ,Aiy8 ,Aiz8 !5~6Aicosa,Aicosa,7Ai ,0!,

assuming f50 in the laboratory frame, whereAi

5ai(j i8)cos(ji81ci), j i85ki(6x82t8)sina1fi . The equa-
tion of motion for electrons in the moving frame is

dp8

dt8
5

dA8

dt8
2“~v8•A8!1“f8, ~5!

where the momentump8 is normalized tomc, the velocity
v8 normalized toc, the vector potentialA85A181A28, the
scalar potentialf8 are normalized tomc2/e, and the first“
acts onA8 only. For theP-polarization case, substituting th
four-vector potential into Eq.~5!, one can find two integra
constants of motion from itsy andz components:

py85py08 1A22A1 , pz85pz08 , ~6!

wherepy08 andpz08 are the initial momentum components
electrons in the moving frame. Note that if transformingpy8
back to the laboratory framepy85(py2g cosa)/sina and
py08 5(py02g0cosa)/sina, and substituting them into Eq
~6!, we obtain Eqs.~3! and ~4! again. The resultingx com-
ponent of Eq.~5! reduces to

dpx8

dt8
52

1

2g8

]

]x8
~py08 1A22A1!2, ~7!

whereg85(11px8
21py8

21pz8
2)1/2 with py8 andpz8 described

by Eq. ~6!.
For the S-polarization case, the corresponding comp

nents of the four-vector potential are simply

~f i8 ,Aix8 ,Aiy8 ,Aiz8 !5~0,0,0,Ai !.

Substituting them into Eq.~5!, one finds two integral con
stants of motion for itsy andz components:

py85py08 , pz85pz08 1A11A2 . ~8!
01640
-
re

e-
e

re

-

Again one can obtain Eq.~4! by transformingpy8 and py08
back to the laboratory frame and substituting them into E
~8!. Thex-component equation takes the form of

dpx8

dt8
52

1

2g8

]

]x8
~pz08 1A11A2!2, ~9!

whereg85(11px8
21py8

21pz8
2)1/2 with py8 andpz8 described

by Eq. ~8!. Therefore, for both theP- and S-polarization
cases, the problem of electron dynamics in intersecting la
pulses reduces to solving thex component of momentum
described by Eqs.~7! or ~9! as similar to that in counter
propagating laser pulses.

The difference for the electron dynamics between theP-
andS-polarization cases can be illustrated by the surface
section plots. Assuming that the two pulses are at the s
frequency and electrons are at zero momenta (py05pz0
50) in the laboratory frame in the absence of laser fie
we find that the right-hand sides of Eqs.~7! and ~9! are
periodic in terms ofj18 at the surfacej282j1852Np for P
and S polarization, respectively. The period is 2p for the
P-polarization case, while it becomesp for the
S-polarization case. Figure 5 shows the surface of sec
plots in the (px8 ,j18) plane atj282j1852Np for both theP-
andS-polarization cases when the two pulses are at the s
frequency. Frames~a!–~d! are forP polarization and frames
~e!–~h! are forSpolarization. By comparing these plots, on
concludes that stochastic motion is more easily triggered
P polarization than forS polarization. Meanwhile, for the
same laser amplitudes, the momentum space for stoch
motion is larger forP polarization than forS polarization.
When the two pulses are at different frequencies, one
make the surface of section plots at the surfacej2852Np.
The results are qualitatively similar as for two pulses w
the same frequency stated above.

In a similar way, we calculate the thresholds of stochas
motion when the two pulses are intersecting with an angle
solving Eqs.~7! and ~9!. Figures 6~a! and 6~b! show the
threshold amplitudes for a test electron initially at rest, wh
two pulses intersecting at angles of 2a560° and 90°, re-
spectively. Obviously, they depend upon the intersect
angles. Moreover, for both cases they are found to be la
than that given in Fig. 3~b! for the case with counterpropa
gating pulses 2a5180°. The threshold amplitudes tend
increase with the decrease of the intersecting angle. In
ticular, whena50°, i.e., two pulses copropagate, there is
stochastic electron motion for two pulses at arbitrary am
tudes since the corresponding Hamiltonian becomes i
grable. Figure 6 also indicates that the threshold amplitu
for S-polarized intersecting pulses are slightly larger than
P-polarized pulses.

III. ELECTRON HEATING AND ACCELERATION
IN PLASMA

A. One-dimensional particle-in-cell simulations

To confirm this acceleration mechanism, we have p
formed numerical simulations with PIC codes. We first try
7-5
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simulate it with a one-dimensional~1D! PIC code since it is
essentially a one-dimensional effect. In simulations,
plasma slab is homogeneous, which occupies a regionL
550l –200l, wherel is the incident laser wavelength. W
leave enough vacuum space on both sides of the plasma
The laser pulses, which are semi-infinite and at the sa
frequency, increase to the maximum amplitudes in 50 la
cycles. We have divided the simulation box into 50 or 1
cells/wavelength to ensure a high accuracy in the numer
integration.

We first set the electron densityn50 in the PIC simula-
tions. In this case, there is not any induced electrostatic fi
in the simulation box, and the laser pulses are actually in
acting with many test electrons distributed homogeneousl
vacuum. Figure 7~a! shows the electron energy distribution
obtained using a semi-infinite pulse with a peak amplitu
a153.0 and without or with the second counterpropagat
pulse at an amplitudea250.1. In the case of without the
second pulse, electrons can only be accelerated to the m

FIG. 5. Surface of section plots atj22j152Np for electron
motion in intersecting laser fields eitherP or S polarized at inter-
secting angle 2a590°. ~a! a15a250.3 for P polarization;~b! a1

5a250.5 for P polarization;~c! a151.0 anda250.1 for P polar-
ization; ~d! a151.0 and a250.5 for P polarization; ~e! a15a2

50.5 for S polarization;~f! a15a250.9 for S polarization;~g! a1

51.0 anda250.1 for Spolarization;~h! a151.0 anda250.5 for S
polarization.
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mum energyg215a1
2/2 when electrons are with zero initia

velocity @15#, which is g2154.5 for a153.0. However, if
there is the second pulse, the maximum kinetic energy ca
more than three times that without it. This can only be attr
uted to the stochastic acceleration since there is no other
except for the laser fields. Meanwhile, the amplitudes of
two pulses already exceed the thresholds for stochastic e
tron motion as shown in Fig. 3~b! @see the curve forvx0
50.8]. This is due to the fact that the ponderomotive for
of the first pulse preaccelerate electrons to a longitud
velocity px /g5a1

2/(21a1
2)50.82, so that the amplitude o

the second pulse can be as small as 0.1 for the occurren
stochastic motion. We find that the temperature tends to
saturated after interaction for a certain period of time. T
can be explained partially by surface of section plots, wh
shows that stochastic motion is found only in limited pha
space around the separatices. For very energetic elect
their trajectories remain regular, and therefore net ene
gain from the laser fields does not occur. This simple
ample demonstrates obviously that the second counterpr
gating pulse can trigger the stochastic motion, which lead
effective energy transfer from laser fields to electrons.

Figure 7~b! shows the case when the laser pulses inte
with a plasma slab at the densityn50.01nc (nc is the critical
density!. Similar to the previous case in vacuum, both t
electron temperatures and maximum electron energy
much higher in the presence of the second pulse, e
though it is only with an amplitudea250.1. Note that the
peaks nearg2153 in the distributions are due to the pon

FIG. 6. Threshold amplitudes for stochastic motion when a
electron moves in the two intersecting laser fields.~a! For the inter-
secting angle 2a560°; ~b! for the intersecting angle 2a590°.
7-6
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EFFICIENT ACCELERATION OF ELECTRONS WITH . . . PHYSICAL REVIEW E69, 016407 ~2004!
deromotive push with semi-infinite pulses, which would
absent for pulses with finite duration. In comparison w
Fig. 7~a!, for the same counterpropagating laser pulses, e
trons are accelerated to a higher temperature in plasma
in vacuum. This is related to the induced strong electrost
fields near the plasma-vacuum boundaries, which tend
draw these accelerated electrons outside the plasma
back, and then they are further accelerated by the laser fi
to other stochastic regimes with high initial energies. T
may also be attributed to the electron acceleration in
presence of an arbitrary stochastic field, where there is
upper limit for the maximum electron energy@15#. Here this
stochastic field can be considered as a combination of
second pulse and the induced electrostatic field. In addit

FIG. 7. Electron energy distributions~not normalized! from 1D
PIC simulations of laser interaction with test electrons in vacuum
a plasma slab at a densityn50.01nc and with a thickness ofL
550l. ~a! With test electrons in vacuum att5400t; ~b! with the
plasma slab att5400t; ~c! with the same plasma slab but at di
ferent laser fields att5200t and 400t. The incident laser pulses ar
semi-infinite and their fronts meet att5100t.
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c-
an
ic
to
lab
lds
s
e
o

e
n,

if one increases the amplitude of the second pulse, the
responding electron temperature is also enhanced withi
the same time duration, as shown in Fig. 7~c!, for example.
In passing, we mention that if we change the initial phase
the incident laser pulses, the electron energy distributi
can be changed. This is most obvious for the relatively l
energy part in the energy distributions. However, the h
energy tail appears to be not very sensitive to the ini
phase differences of the laser pulses.

B. Effects of the density and length of the plasma slab

If fixing the length of the plasma slab, but increasing t
plasma density, one finds that electron can be significa
accelerated to well beyond the ponderomotive poten
level, even if one uses a single laser pulse only. Figure 8~a!
displays electron energy distributions when the initial plas
density is increased ton50.04nc while retaining its length
L550l and the pulse amplitudea153.0 as in Fig. 7~b!. It
shows that the highest electron energy is larger than the p
deromotive potential by over one order of magnitude. Alt
natively, if one fixes the plasma density, but increases
length of the plasma slab, we also find significant accele
tion of electrons with a single laser pulse. In Fig. 8~b!, we
plot energy distributions when the plasma length is increa
to L5200l while retaining the plasma densityn50.01nc

r

FIG. 8. Electron energy distributions~not normalized! from 1D
PIC simulations.~a! The plasma slab is with a thickness ofL
550l but with an increased density atn50.04nc . A semi-infinite
laser pulse is incident with a peak amplitudea153.0; ~b! the
plasma slab is with a thickness ofL5200l and with a density at
n50.01nc . Shown are the distributions att5600t.
7-7
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SHENGet al. PHYSICAL REVIEW E 69, 016407 ~2004!
and the pulse amplitudea153.0. In these two examples, th
electron acceleration is closely associated with the excita
of Raman backscattered waves@22,34–37#, which achieve
amplitudes even higher than 0.1 and trigger the stocha
acceleration.

To illustrate more clearly the effects of the plasma dens
and length, we plot the Raman backscattered waves in F
9~a! and 9~b! for plasma slabs at the same densityn
50.01nc but with different lengthsL550l and 200l, re-
spectively. Note that at such a density, reflection from
vacuum-plasma boundary is neglectable as compared to
Raman backscattered wave shown in Fig. 9 according to
well-known Fresnel formula. IfL550l, the backscattered
wave appears with a high amplitude only in a time durat
less than 100 laser cycles. Therefore, it can assist to acc
ate electrons only within this time domain. Beyond this tim
domain, the amplitude of the corresponding backscatte
wave is too low to trigger the stochastic electron motion,
illustrated by the corresponding energy distribution in F
7~b!. For the same plasma length but at a higher density s
asn50.04nc , the time dependence of the Raman backsc
tered wave appears similar to Fig. 9~a!. However, its ampli-
tude is much higher so that stochastic acceleration can
tain a long time, leading to the energy distributions giv
Fig. 8~a!. Similarly, if L5200l, the high-amplitude Raman
backscattered wave appears in much long time domain e
if n50.01nc . Therefore, the mechanism of stochastic acc

FIG. 9. Raman backscattered light from 1D PIC simulatio
when a semi-infinite laser pulse with peak amplitudea153.0 is
incident onto a plasma slab with a densityn50.01nc . ~a! The
plasma slab is with a thickness ofL550l; ~b! the plasma slab is
with a thickness ofL5200l.
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eration can work continuously, leading to the energy dis
butions given in Fig. 8~b!.

On the other hand, Fig. 9 shows that the amplitude
Raman backscattered wave changes from period to perio
a random way, i.e., it appears like a stochastic transve
field. As a result, the electron acceleration in these cases
be explained alternatively with the mechanism proposed
Ref. @15#, even though the Raman backscattered wave d
not appear like a white noise as adopted there. Assume t
is a planar laser pulse with amplitudea1 and a transverse
stochastic fieldR(t), where the latter is simply in a Gaussia
random distribution with^R&50 and ^R(t)R(t8)&5Dd(t
2t8), hereD the diffusion coefficient in momentum spac
normalized bym2c2v1. Direct numerical calculation with
the equation of motion in a way described in Ref.@15# shows
that electrons can be accelerated up to a temperature o
MeV and to the maximum energy around 50 MeV within t
interaction time of 150 laser cycles for the laser amplitu
a153.0 andD50.01. This is comparable to what is ob
served from PIC simulations at similar conditions. Altern
tively, the acceleration process can be described by a Fok
Planck equation@38#. Numerical calculations with this
equation produce a temperature scaling for hot electr
similar to that found in Ref.@15# and in the PIC simulations
as discussed later.

To see how electrons are accelerated with time, we p
electron distributions in the longitudinal phase space at
ferent times. Figure 10 is obtained for the case when a sin
laser pulse propagates in a plasma slab with a length oL
5200l. Figure 10~a! shows the snapshot when the las
pulse front propagates just through the plasma slab. Elec
energy increases continuously with time and in space fr
the right to left up to beyond the ponderomotive potential
the laser pulse. One notes that the induced electrostatic
is at a quite low level. Therefore electron accelerati
through plasma-wave excitation can be excluded. At la
time, electrons are accelerated to a higher level as show
Fig. 10~b!, where electrostatic field remains to be at a lo
level except near the plasma-vacuum boundaries. These
ures serve as an obvious evidence of direct laser accelera
More evidences about this are given as following.

s

FIG. 10. Electron distributions in the longitudinal phase spa
found when a semi-infinite laser pulse at the peak amplitudea1

53.0 propagates through a plasma slab, which is initially at a d
sity n50.01nc and with a thickness ofL5200l. The lower frames
show the longitudinal electric field in the simulation box.~a! At t
5300t; ~b! at t5800t.
7-8
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EFFICIENT ACCELERATION OF ELECTRONS WITH . . . PHYSICAL REVIEW E69, 016407 ~2004!
C. Evidences of direct laser acceleration

In the case of electron acceleration in counterpropaga
laser fields, one expects that energetic electrons move
dominantly along the propagating direction of the more
tense one of the two pulses whena1@a2, as suggested by
Fig. 1. In the case of electron acceleration by a single la
pulse, there exists a well-known formula relating the ene
of scattered electrons to the angleu, which is given by@2,18#

tan~u!56@2/~g21!#1/2. ~10!

Figure 11~a! shows the angular directions of electrons acc
erated by a single laser pulse in vacuum, which is well
scribed by Eq.~10!. Here the forward-moving pulse propa
gates alongu50°. In the case with two intersecting las
pulses, the angular directions of electrons are related to t
kinetic energy by Eq.~4! in general. Therefore it is interes
ing to check if the hot electrons observed in the simulatio
also follow this relation. In case with counterpropagating
ser fields, we havea590° andC5py0 in Eq. ~4!. However,
in the presence of the laser fields, one should useC5py0
1(A22A1)sina. If py050, the value ofC ranges from 0 to
a1 for a1@a2. Therefore the high energy electrons basica
follow

tan~u!56@~g221!/a1
221#21/2. ~11!

FIG. 11. Angular distributions of electrons vs the relativis
factor g under the interaction of either a single laser pulse or t
counterpropagating laser pulses.~a! With test electrons in vacuum
whena153.0 anda250.0; ~b! with test electrons in vacuum whe
a153.0 anda250.1; ~c! with a plasma slab at densityn50.01nc

and thicknessL550l whena153.0 anda250.0; ~d! with a plasma
slab at densityn50.01nc and thicknessL550l whena153.0 and
a250.1. The gray solid line is for tan(u)561/A(g221)/a1

221
and the gray dashed line is for tan(u)56A2/(g21).
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For g.11a1
2/2, this formula predicts a smaller angle alon

the forward direction than that predicted by Eq.~10!. Figure
11~b! shows the angular directions of electrons by two cou
terpropagating laser pulses in vacuum. Obviously Eq.~11!
agrees with the numerical simulations better than Eq.~10!
does for those most energetic electrons. Figure 11~c! shows
the angular direction of electrons accelerated by a sin
pulse in plasma. Even in this case, Eq.~11! agrees with nu-
merical simulations better than Eq.~10! does. This in turn
indicates that the stochastic acceleration with two coun
propagating pulses is responsible for the most energetic e
trons in this case because of the excitation of Raman ba
scattered waves. When the second counterpropagating p
is additionally applied, the directions of high energy ele
trons agree with Eq.~11!, as shown in Fig. 11~d!. For those
electrons with relatively low energy that does not follow E
~11!, the induced electrostatic field should be a respons
factor @33#.

In PIC simulations, there is another way to check whet
the energetic electrons gain energy from the transverse l
fields or from the induced longitudinal fields. It is to mak
use of the relationg511G uu1G' , following the equation of
motion for electrons@13,16#, whereG uu52*0

t dt8Exvx and
G'52*0

t dt8E'v' , Ex andE' are the normalized longitu
dinal and transverse electric fields, respectively. HereG uu
stands for the energy gain due to the longitudinal elec
field, while G' represents the contribution of direct las
acceleration by the transverse field. The energy gain from
laser field is eventually directed in the longitudinal directi
through the Lorentze force. Figure 12 shows examples
electrons distributed in theG uu;G' space found from both
1D and 2D PIC simulations of the interaction of two cou
terpropagating laser pulses with underdense plasma slab
demonstrates that electrons are accelerated mainly by
transverse laser fields in all these cases.

D. Two-dimensional effects

PIC simulations in 2D geometry can introduce new
fects such as Raman side-scattering@31#, return electron cur-
rents in the surrounding regions of the laser beam center,
new acceleration mechanism such as the betatron reson
mechanism@16#. As a result, it is expected that electrons c
be accelerated to a different level from the 1D simulatio
for the fixed laser pulse and plasma parameters. To ch
how stochastic acceleration works in the 2D geometry,
conduct a series of 2D PIC simulations. Snapshots of
obtained energy distributions are given in Fig. 13. In the
geometry, there are two different cases for the incident la
pulses, i.e., they areP polarized if the electric field compo
nents are within the simulation plane orS polarized if the
electric field components are perpendicular to the simula
plane. Figure 13~a! shows the energy distributions eithe
with or without the second counterpropagating pulse for
P polarization case. As the same as that found in 1D P
simulations, with the presence of the counterpropaga
pulse, electrons are accelerated to much high level than w
out it. Figure 13~b! displays the energy distributions for th
S-polarization case. It is obvious that the mechanism of s

o
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SHENGet al. PHYSICAL REVIEW E 69, 016407 ~2004!
chastic heating and acceleration also works in this case.
thermore, in the presence of the second counterpropaga
laser pulse, it appears that electron acceleration in
P-polarization case is more efficient than in th
S-polarization case. This can be partially attributed to se
of the betatron resonance mechanism@16# in P polarization,
which is absent inS polarization. However, one also note
that, without the presence of the counterpropagating pu
electrons are accelerated to a similar low level for the t
polarization cases.

Corresponding to the electron energy distributions,
quasistatic current and magnetic field in the presence of
second pulse are found to be significantly increased than
without it. As shown in Figs. 14~a! and 14~b!, the peak qua-
sistatic magnetic field in the case with the second coun
propagating pulse~even though at an amplitudea250.1) is
more than three times larger than that without it. We note t
the maximum quasistatic currents and magnetic fields fo
for the two polarization cases are comparable, even tho
the maximum electron energy found for theP-polarization
case is much higher than for theS-polarization case when th
counterpropagating laser pulse is applied.

FIG. 12. Electron energy gain from longitudinal fields vs th
from transverse laser fields when the two counterpropagating l
pulses interact with a plasma slab at densityn50.01nc and thick-
nessL550l. ~a! From a 1D PIC simulation fora153.0 anda2

50.1 at t5300t; ~b! from 2D PIC simulation fora153.0 anda2

50.2 att5160t when the incident pulses areP polarized;~c! from
2D PIC simulation fora153.0 anda250.2 at t5160t when the
incident pulses areS polarized.
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FIG. 13. Snapshots of electron energy distributions~not normal-
ized! from 2D PIC simulations of laser interaction with a plasm
slab at densityn50.01nc and thicknessL550l at t5140t. ~a! For
the P polarization;~b! for the S polarization. The laser pulses ar
semi-infinite.

FIG. 14. ~Color online!. Quasistatic magnetic fields from 2D
PIC simulations of laser interaction with a plasma slab at den
n50.01nc and thicknessL550l at t5160t. Both the laser pulses
are S polarized and semi-infinite.~a! a153.0 anda250.0; ~b! a1

53.0 anda250.2.
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EFFICIENT ACCELERATION OF ELECTRONS WITH . . . PHYSICAL REVIEW E69, 016407 ~2004!
E. Electron energy scaling

To see the dependence of electron temperatures on
pulse amplitudes, we take a plasma slab with a thicknes
L550l and at a low densityn50.01nc to avoid the high
Raman backscattered wave. A series of 1D PIC simulati
have been conducted by changing eithera1 or a2. For the
interested forward acceleration rather than the isotropic h
ing, we usually takea1@a2. Through these simulations, it i
found that, at early time well before the hot electron heat
gets saturated, the hot electron temperature and the m
mum electron energy scale proportional to;a1

d1a2
d2td3,

wheret is the interacting time duration,d1 , d2, andd3 are
factors related to pulse profile and amplitudes. For the c
with semi-infinite laser pulses, we have roughlyd1;2 and
d2;0.5; while for pulses with finite pulse durations, w
have roughlyd1;1 andd2;0.5 after the laser pulses pa
through the plasma region. These two different scaling la
with the intensity of the first pulse can be associated w
different ponderomotive pushes in these two cases. W
pulses with finite durations, electrons experience not only
initial forward ponderomotive push at the leading edge
also a corresponding opposite push from the pulse tail, wh
the latter reduces the final energy gain. Scaling to the t
duration is normally liked3'0.5–1.0. This scaling agree
qualitatively to what we found before for electron accele
tion by an intense laser pulse in the presence of a stoch
field @15,38#, where it is found that the hot electron temper
ture scales proportional to the square root of laser inten
and depends relatively weakly upon the level of the stoch
tic field. Finally, for an intense pulse with a finite but suf
ciently long duration such as a few hundred laser cyc
even if the opposite ponderomotive push from the pulse
may obviously change the electron energy spectrum aro
the ponderomotive potential level, it cannot change the
ergy spectrum significantly at the regime with a much hig
energy level.

IV. SUMMARY

In summary, we propose a scheme that can efficie
accelerate electrons to a temperature much higher than
laser ponderomotive potential by use of two counterpro
gating laser pulses either in vacuum or in underde
plasma. The acceleration is triggered as soon as stoch
motion of electrons occurs. The threshold amplitudes for
stochastic motion have been found numerically. It is fou
that the preacceleration of electrons by the ponderomo
force of a forward-propagating laser pulse can largely red
the threshold amplitude of the counterpropagating pulse
ay
1
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triggering the stochastic motion. Particle-in-cell simulatio
show that this mechanism can be dominant in laser inte
tion with underdense plasma, where the counterpropaga
wave could either be the Raman backscattered/side-scat
wave of an incident pulse in underdense plasma or the
flected wave of the pulse from overdense plasma regio
Energetic electrons generated through this scheme m
predominantly in the propagation direction of the pulse w
relatively higher intensities. In addition, the Rama
backscattered/side-scattered wave of a high intensity l
pulse can also serve as a stochastic field, which deph
electrons and thereby allows for net energy transfer from
laser to electrons as suggested in Ref.@15#.

In the interaction of subpicosecond intense laser pu
with plasmas at moderate densities such as a few tens pe
of the critical density, the present acceleration mechan
may play a dominant role for observed particle accelerati
In this circumstance, it can be more efficient than the we
known mechanism of self-modulated laser wake-field acc
eration ~SM-LWFA!, because electron acceleration by
plasma wave is limited by its phase velocity. The SW-LWF
is efficient only in tenuous plasma, where the phase velo
of the generated plasma wave is so high as very close to
vacuum speed of light. In plasmas at moderate densi
however, the Raman backscattering can be easily excited
high level and trigger the stochastic acceleration of electro
For relativistic-intense laser pulses, the Raman backscatt
and side-scattered waves of the incident laser pulses
be excited even if the plasma density is larger thann
50.25nc . This is partially owing to the relativistic effect an
partially owing to the merging of the Raman scattering ins
bility with the relativistic modulation instability in the wave
vector space@22,34–37#. As a result, the stochastic heatin
and acceleration of electrons should occur throughout all
derdense plasma regions where the intense laser pulse
propagate.

ACKNOWLEDGMENTS

We acknowledge stimulating discussions with Y. Sento
M. Jovanovic, T. Taguchi, and D. Umstadter on this wo
This work was supported in part by the National Natu
Science Foundation of China~Grant Nos. 10105014
19825110, and 10075075!, the National High-Tech ICF
Committee of China, the National Key Basic Research S
cial Foundation~Grant No. G1999075200!, the Japan-China
Core University program, and the Bundesministerium̈r
Bildung und Forschung~BMBF! and the Deutsche Fors
chungsgemeinschaft of Germany.
@1# G.A. Mourou, C.P.J. Barty, and M.D. Perry, Phys. Tod
51„1…, 22 ~1998!; G. Mourou and D. Umstadter, Sci. Am. 8
~May, 2002!.

@2# J. Meyer-ter-Vehn, A. Pukhov, and Z.-M. Sheng, inAtoms,
Solids, and Plasmas in Super-Intense Laser Fields, edited by
D. Bataniet al. ~Kluwer Academic/Plenum, New York, 2001!,
pp. 167–192.
@3# D. Umstadter, Phys. Plasmas8, 1774~2001!.
@4# M. Tabaket al., Phys. Plasmas1, 1626~1994!.
@5# J. Meyer-ter-Vehn, Plasma Phys. Controlled Fusion43, A113

~2001!.
@6# A. Pukhov, Phys. Rev. Lett.86, 3526~2001!; Y. Sentokuet al.,
7-11



ns

J.

as

i,

tt.

ter,

u-

las-
E.

s.

c,

ys.

ys.

as-

SHENGet al. PHYSICAL REVIEW E 69, 016407 ~2004!
Appl. Phys. B: Lasers Opt.74, 207 ~2002!; S.C. Wilkset al.,
Phys. Plasmas8, 542 ~2001!; A.J. Mackinnonet al., Phys.
Rev. Lett.88, 215006~2002!; Z.Th. Esirkepovet al., ibid. 89,
175003~2002!.

@7# P. Norryes, Phys. Plasmas6, 2150~1999!.
@8# C. Gahnet al., Appl. Phys. Lett.73, 3662~1998!.
@9# M.N. Rosenbluth and C.S. Liu, Phys. Rev. Lett.29, 701

~1972!; T. Tajima and J.M. Dawson,ibid. 43, 267 ~1979!.
@10# E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Tra

Plasma Sci.PS-24, 252 ~1996!.
@11# V. Malka et al., Science298, 1596~2002!.
@12# D. Umstadteret al., Phys. Rev. Lett.76, 2073 ~1996!; E. Es-

areyet al., ibid. 79, 2682~1997!.
@13# Z.-M. Sheng, K. Mima, Y. Sentoku, K. Nishihara, and

Zhang, Phys. Plasmas9, 3147~2002!.
@14# G.R. Smith and A.N. Kaufman, Phys. Rev. Lett.34, 1613

~1975!; Phys. Fluids21, 2230 ~1978!; C.R. Menyuk et al.,
Phys. Rev. Lett.58, 2071 ~1987!; S. Kawata,ibid. 66, 2072
~1991!; M.S. Hussein and M.P. Pato,ibid. 68, 1136~1992!; Y.
Gell and R. Nakach, Phys. Rev. E55, 5915~1997!.

@15# J. Meyer-ter-Vehn and Z.M. Sheng, Phys. Plasmas6, 641
~1999!.

@16# A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, Phys. Pl
mas6, 2847~1999!; C. Gahnet al., Phys. Rev. Lett.83, 4772
~1999!.

@17# Z.-M. Sheng, K. Mima, Y. Sentoku, M. Jovanovic, T. Taguch
J. Zhang, and J. Meyer-ter-Vehn, Phys. Rev. Lett.88, 055004
~2002!.

@18# G. Schmidt and T. Wilcox, Phys. Rev. Lett.31, 1380 ~1973!;
C.I. Mooreet al., ibid. 74, 2439~1995!; F.V. Hartmannet al.,
Phys. Rev. E51, 4833~1995!; B. Rauet al., Phys. Rev. Lett.
78, 3310 ~1997!; E. Esareyet al., Phys. Rev. E52, 5443
~1995!; C.J. McKinstrie and E.A. Startsev,ibid. 56, 2130
~1997!; B. Quesnel and P. Mora,ibid. 58, 3719~1998!.

@19# F. Brunel, Phys. Rev. Lett.59, 52 ~1987!.
@20# W.L. Kruer and K. Estabrook, Phys. Fluids28, 430 ~1985!.
@21# G. Shvetset al., Phys. Rev. E60, 2218~1999!; Phys. Plasmas

9, 2383~2002!.
01640
.

-

@22# J.C. Adamet al., Phys. Rev. Lett.78, 4765~1997!.
@23# Y. Sentokuet al., Appl. Phys. B: Lasers Opt.74, 207 ~2002!.
@24# K.-C. Tzeng, W.B. Mori, and T. Katsouleas, Phys. Rev. Le

79, 5258~1997!.
@25# P. Zhang, N. Saleh, C. Chen, Z.M. Sheng, and D. Umstad

Phys. Plasmas10, 2093 ~2003!; Phys. Rev. Lett.91, 225001
~2003!.

@26# E.S. Sarachik and G.T. Schappert, Phys. Rev. D1, 2738
~1970!.

@27# G.M. Zaslavskii and N.N. Filonenko, Sov. Phys. JETP25, 851
~1968!; A.B. Rechester and T.H. Stix, Phys. Rev. A19, 1656
~1979!; D.F. Escande and F. Doveil, Phys. Lett. A83, 307
~1981!; 84, 399 ~1981!.

@28# D. Bauer, P. Mulse, and W.H. Steeb, Phys. Rev. Lett.75, 4622
~1995!; G. Schmidt, Comments Plasma Phys. Controlled F
sion 7, 87 ~1982!.

@29# J.T. Mendonca and F. Doveil, J. Plasma Phys.28, 485 ~1982!;
Phys. Rev. A28, 3592~1983!.

@30# A.J. Lichtenberg and M.A. Lieberman,Regular and Stochastic
Motion ~Springer-Verlag, New York, 1981!, and references
therein.

@31# D.W. Forslundet al., Phys. Rev. Lett.54, 558 ~1985!.
@32# B.V. Chirikov, Phys. Rep.52, 263 ~1979!.
@33# Z.-M. Shenget al., Phys. Rev. Lett.85, 5340 ~2000!; Z.-M.

Sheng and J. Meyer-ter-Vehn, in Superstrong Fields in P
mas, edited by M. Lontano, G. Mourou, F. Pegarars, and
Sindoni, AIP Conf. Proc.426 ~AIP, Woodbury, 1998!, 153.

@34# Z.-M. Sheng, K. Mima, Y. Sentoku, and K. Nishihara, Phy
Rev. E61, 4362~2000!.

@35# K. Mima, M. Jovanovic, Y. Sentoku, Z.M. Sheng, M. Skori
and T. Sato, Phys. Plasmas8, 2349~2001!.

@36# B. Quesnel, P. Mora, J.C. Adam, A. Heron, and A. Laval, Ph
Plasmas4, 3358~1997!.

@37# S. Guerin, A. Laval, P. Mora, J.C. Adam, and A. Heron, Ph
Plasmas2, 2807~1995!.

@38# T. Nakamura, S. Kato, M. Tamimoto, and T. Kato, Phys. Pl
mas9, 1801~2002!.
7-12


